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ROBUST STABILITY OF LINEAR SYSTEMS - SOME
COMPUTATIONAL CONSIDERATIONS*

by

Alan J., Laub*¥

1. INTRODUCTICN

In this paper we shall ccncentrate on some of the computational issues
which arisg in studying the robust stability of linear systems. Insofar
as possible, we ghall use notation consigtent with Stein's paper [1] and
we shall make frequent reference to that work.

As we saw in [l] a basic stability guestion for a linear time-invariant
system with trangfer matrix G(s) is the following: given that a ncominal
clcsed=~loop feedback system is stable, deces the feedback system remain
stable when subjected to perturbations and how large can those perturba=-
tions be? It turned out, through invocation of the Nyqﬁist Criterion,
that the size of the allowable perturbations was related to the "nearness
to singularity" of the return difference matrix I + G{jw}). Closed-loop

stability was said to be "robust" if G could tolerate considerable

perturbation before I + G became singular.
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Postgraduate School, Monterey, California, Feb. 20-24, 19$79; this
research was partially supported by NASA under grant NGL-22-009-124 and
the Department of Energy under grant ET=-78=-(01-33985),
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We shall now indulge in a modicum of abstraction and attempﬁ to
formalize the notion of robustness. The definition will employ some
jargon from algebraic gecmetry and will be applicable to a variety of
situations. While no deep results from algebraic geometry need be em-
ployed, the exercise of formulating a precise definition is a useful one
for clarifying one's thinking.

et p € Idg Ee a vector of parameters from some problem being studied
and suppose we are interested in some property Il of this data. The vector
p may consist of the elements of various matrices, for example., IE£ ]
is true at some nominal parameter set p, we are frequently concerned with
whether I remains true in a "neighborhood" of By
a )

11’ "' 2n’ 17000 %

of a neonsingular nxn matrix AO and we are interested in the nonsingulazity

of nearby matrices., We shall proceed to formalize the often~heard statement

For example, po may be the elements (a a

that "almost all nxn matrices are nonsingulax". First, the jargon:

Definition 1: A variety V = {p GJRN: wi(pl,..., PN) =0, i=1,..., k}
where wi(xl"f" xN) e:R[xl,..., ij are polynomials.

V is proper if V #IRN and nontrivial if V # ¢,

. s . i
Definition 2: A property is a function II: n? + {0, 1}. The property

I holds if Ni(p} = 1 and fails if M(p) = Q.

Definition 3: If V is a proper variety, I is generic relative to U

provided I (p) = 0 only if p € /. A property | is

generic if such a V exists.

Our discussion to this point is purely algebralc. Now let us intro-

duce a topolegy onIRN, say the topology induced by scme vector norm H‘ “.



furthermore, let |/ be any nontrivial, proper variety. Then we have

the following topological definiticn.

Definition 4: The property Il is well-posed at p € Vc(the complement of

V) if K also holds in a sufficiently small neighborhood

of p.

Lemma l: The set S of points where a generic property is wellw-posed
is open and dense, Moreover, the lebesgue measure of Sc

is zexo.

The proof of Lemma 1 is routine and is omitted. It is easy to see
that. a point p where a generic property holds is well-posed but that the
converse is not necessarily true.

We now have sufficient framework to make a formal definition of

robustness,

pefinition 5: Given a point p with generic property Il (generic with

respect to some proper variety V) well-posed at p, let

d=min [lp = v].
veV

We say il is rcbust at p 1f d is "large".

Thé nurber d is frequently difficult to compute or estimate. When
it can be éétermined, it gives valuable information about how much
perturbation or uncertainty can be tolerated at p. For the situation
of special interest in_this paper,Example 2 below, we shall see that
¢ can be éxplicitly calculated, at least theoretically. We now illustrate

the above concepts with two examples.



Exgggle 1

This example is chosen from Wonham [2] who uses the concepts of
genericity and well-posedness in nontrivial ways for a variety of control-
theoretic problems. In this trivial example, we seek solutions of the

system of linear equations
Ax = b

where A eszxn (i.e., A is an mxn matrix with real coefficients) and b e:ﬁ“.
Cur parameter vector is p where

T N
p = (all,-.., aln""’ a i bl""’ bm) €ER, N=mn+m

(T denotes transpose). I is the property of the eguation having a solution
which is equivalent, of <ourse, to the statements that b € Im A or

2 4
0 if b2 # 2bl

1 2 b, \
rk[A, b] = rk A, For example, if A = and b = b-) then
2

m(1,2,2,4; b,,b) =

1 . _
1 if b2 = 2b1

It is then easy to show the following: (see [2])

1. 1T is generic if and only if m < n.

2. I is well-posed at p if and only if rk A = m.

Example 2
This example is similar to Example 1 in the special case m = n. We
are given a nonsingular matrix A eanxn and we are concexrned with the

. ‘o T
nearness of A to singularity. Identifying A with p = (a

PR ) a

11 in’

ot
Byqreecr ann) we define the property II by



0 if p represents a singular matrix
T(p) =
1 if p represents a nonsingular matrix .

Then it is easy to see that Il is a generic property and well-posed where
it holds. This is the precise gtatement that "almost all nxn matrices
are nonsingular". Formally writing down the determinant of A as a poly-

nemial in a defines the necessary variety V., It turns out,

11;-.0, ann
in a theorem attributed by Xahan [3] to Gastinel, that the distance d

from a point p € ¢ to V can be explicitly determined.

Theorem l: A nonsingular matrix A differs from a singular matrix by no
1l

Tl

more in norm than

i.e., given a,

-—%T—- = min{||[E]|: A + E is singular}.
"]
Thus 4 = L -and we might say that A is robust with respect to

-1
a1l |
invertibility if 4 is "large". To avoid certain scaling difficulties,

it may be more desirable to work with a relative measure of distance,

drEl, defined by

drel - a - - 1 = 1
lall Ualf - a7l x®

The quantity K(A) is recognizable as the condition number of A with
respact to inversion. Of coukse, all the above quantities depend on the
particular matrix norm used. To exhibit the specific dependence on the

nomm | + |

we shall append a subscript “g"., For example,
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The minimizing E in Theorem 1 can be explicitly constructed for a number

of standard matrix norms., For example:

.

Lol ~ o Tt

Let A have singular value decomposition A = USVT where U, V e W

are orthogonal and S = diag{cl,..., cn'}. The 0,'s, 0 >0 >0,

T

>l " e
1l —
are the singular values of A, The minimizing E is given by E = URV

Where R= diag{Of- cey 0' -Un}. Then

| 1
lell, = o, = ===

[t

and A + E is singular. The singular direction, i.e., a nonzero
vector z such that (A + E)z = 0, is given by the nt—h- column of

vl

ol}' -:l-g{lfzjll.' n} -

. n
1]l = max € la,,

ien 3=l

n
Suppose A - [¢,.] and [[ a 1‘” = Z |0L I for kK € n. Then the
ij s=1 k3 =
minimizing E is a matrix all of whose elements are 0 except

fo:: the kgl column which consists of the elgments

- 341 ukl =-sgn akn
Ha™ 1, 2™l
2
%1 ‘o
In fact, letting z = sgn . and u = 1/“.7; [| -} With the only
akn .

0



nonzero component of u being in the ksg-row, we have E = -zuT
| -i” . Now, (I+EA M)z = (1 - uTA-lz)z- 0
A a' k
- -1 T ~1
since the RE element of A "-"z is ): IU-ij = ”A !Imso that u™A "z = 1.
1

and clearly [!E” o =

Hence A + E = (I 4 EA"]')A is singular. Moreover, the singular direction is

given by A"Y: since (a+m)a~iz = 0.

n
3. | al] = max (} |a,,]}.
d :’Ieg_izll 1!

The results for this norm are analogous to " . and can be dexived

|

directly or by noticing that || A “l = || AT|LD . For completeness we

n
note that if [[al = ] l“ikl for k € n and
i=l

%1k (_.’
» l-l
z =sgn| . ' u= [1/]h [|1
ank 0

then the minimizing E is given by E = -uzT.

We shall see in Section 3 how the results in Example 2 can be applied

in studying rcbustness of stability of linear systems.



2. THE LINEAR SYSTEMS SETTING

In this section we shall provide a brief intreduction to both the
linear time~invariant systeits setting and to the fundamental notion
of feedback. This will serve a two-fold purpose: first, to set the stage
for the basic stability results and second, to i;tr;duce the jargen and
notation, especially for non-engineers. This material is standard and
can be found in any of a number of standard textbooks on control systems.
We shall consider meodelling physical systems by models which take
the form of a system of linear constant-ccefficient ordinary differential

equations
k(t) = Ax({t) + Bu{t) (L)
y(t) = Cx(t) | (2)

The vector x is an n-vector of states, u is an m-vector of inputs or
controls, and y is an r-vector of outputs or observed variables.
Starting f£rom the initial condition x(0) the solution of (1) is

well=known to he

x(t) = etax(OJ o fe (£ - T)Aﬂu('r).d"c, t>0 (3)
0 : '
so that the output is given by
yie) = ce™x(0) + j;:e(t-T)ABu(T)dr, t>0 (4)
0

where etA iz the matrix exponential defined, but not generally

computed, by
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The matrix Ce'™8 is called the impulse response matrix.
Denoting (cne-sided) Laplace transforms by upper case letters, take
Laplace transforms in (4) to get

1

¥(s) = CX{(8) = C(sI=A) tx(0) + C(st -A) " BU(s) . (s)

The matrix G(s): = C(sI ~ A)-IB is called the transfer matrix. Notice

that G(s) is the Laplace transform of the impulse response matrix.,
As will P2 seen in the sequel, it is of interest to study the

response of the above linear system to sinuseoidal inputs of the form

ey, £ 0 (6)

ult) = e

where v is a constant m-vector, @ is the frequency of the sinusoidal
input, and j = V=1, The response of (l) to this input can then ke
shown to be of the form

x(t) = e"By + (j0I-a) ‘Bvel¥t, £>0 N

where a is a constant n-vector depending on initial conditions. Now,
in the case where A is stable {i.e., its spectrum lies in the left-~
half of the complex plane) the quantity etAa goes to zero as t approaches

+», The resulting output

jut

y({t) = C(jul - A)-lee (8)

is called the steady-state frequency response and the matrix

G(dw): = C(30I - &)1 , (9)

which turns out to be the transfer function evaluated at s = jw, is

called the frequency response matrix,



Turning now to the case of a real signal given by

() = v.sin{wt + 4.), £>0 (10)
Yy k k -

ui(t) 'Of i"l,qoo, m;ifk,

we have steady-state frequency response of the 2th output given by

o (t) =[Gy, (G |, sin(ut + ¢ + ¥, ) (11)

where wzk = a:g(le(jm)).
Aside from its obvious importance in the above analysis, the

frequency response matrix is important for two reasons:

1. Sinusoidal signals are readily available as test signals

for a linear system so G(jw) can ke experimentally determined.

2. Various plots or graphs associated with G(jw) can be used to
analyze control systems, for example, with respect to stability.
Plots such as those associated with the names of Bode, Nichols,
and Nyquist are essentially different ways of graphically
representing lle(jm)l and arg(sz(jm)) as functions of
®. These plots are used extensively in the analysis of
single~input single~output control systems where the robust-
ness of stability, e.g., the amount of'gain and phase margin
available, iz checked essentially visually., The appropriate
techniques in the multiple~input multiple-oﬁtput case are |
still heing investigated and part of the motivation for the

research in [1] and this paper is directed towards this end.



Turning now to the notion of feedback whose essential idea is to
allow for stability of a system in the face of uncextainty (neoise,
model error, etc.), the diagram below illustrates the basic (unity)

feedback control system:

u 4 e y

Fig. 1. Basic Feedback Control Svstem

Here u ig a reference input, ¥ is the output, and e = u = v iz the error
or difference between the reference input and the output which we wish
to be,ideally, zero. The plant, compensators, actuators, and sensors
are all represented by G. There are much more elaborate and detailed
feedback structures than that described above and the structure can be
studied in a considerably more general function=-space setting (see [4],
for example) than the simple linear causal time=-invariant setting we
shall coensider. However, the simple system is adeguate to exhibit most

of the key ideas in this paper. WNow, in this system we have
e=u-=-y=u=CGe (12)
or,

(I+G)e = u (13)



The quantity I + G is called the return difference matrix. As in [1],

the matrix G(jw) then provides sufficient data, via the Nygquist criterion,
to test for stability of the c¢losed-loop system, Henceforth, we shall
assume that our nominal feedback system above is stable in which case

I+G is invertible. Then from (13) we have
=]
e = {I+G) "u (14)
50 that

y = Ge = G(I+G) tu . (15)

In (15), the gquantity G(3) (I + G(s))-l is called the closed-loop transfer

matrix while G(jm)(Ié-G(jm))-l is called the closed~lcop frequency

response matrix, We then pose the basic stability question:

boes the nominal feedback system remain stable vhep subjected

to perturbations and how large can those perturbations be?

Let us observe at this point that there is ncthing sacred about
linearity in the above discussion and more general nonlinear treat-
ments can be found in [4] and {5], for example. The guestion of "near-
ness to sinqularity" of (1+G), even.in the nonlinear case, is naturally
intimately related to a notion of condition numker for nonlinear
equations., The interested reader could readily adapt the ideas of

Rheinboldt (6] to the particular application at hand here.
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3. BASIC STABILITY RESULTS AND RELATED TOPICS

a. ADDITIVE AND MULTIPLICATIVE PERTURBATICNS

We shall consider two fundamental types of perturbations in the
basie feedback system of Fig. 1. Throughout this section, |]°|| will
denote any matrix norm with III[IB 1. The first case to be considered

is the case of additive perturbations to G, pictured below:

L

Fig., 2. Additive Pexturbations

In other words, the nominal G is perturbed to G + L. Undexr the assunptions
that both the neminal closed-loop system and the pertuxbation I are

stabie it can be seen from the Nyguist critexion and the identity
I+G+LE (I+6) [T+ (T+G) L] ' (16)

that *he perturbed ¢losed-loop system remains stable if
R &
[tz+6(3a)) "L [ <1, w>o0 (17)

A weaker condition than (17) but one which directly exposes L is



-14-

lLew || < 1 , ®>0 (18)

ez + a3y 2|

The second case to be considered is that of multiplicative perturba-

tions:

“ 3 ehI-!-L. G y_;-

Fig, 3. Multiplicative Parturbations

In this case, the nominal ¢ is perturbed te G(I+L). Under the assumptions
that both the nominal closed-logp system and the perturbation L are

stable it can be shown from the Nyquist criterion and the identity

Lyl (19)

I+ G(I+L) S (I+6G) [I + (T+G
that the perturbed closed~locp system remains stable if
~1,. .=l . :
[tz + 6~ Gan "L || < 2, w>0 (20)

3 -l L] & I}
{assuming G = exists). Again, a weaker condition than {20) but one

which directly exposes L is

iz G || < — _i_ —— 0 >0 . ' (21)
Hz+e " (077



15~

Remark l: As we noted in Section 1, the above inequalities are tight,

i.e., the < cannot be replaced with < .
Remark 2: Where convenient we shall henceforth drop the "jw" arguments,
Remark 3: It must be stressed that the results based on

st faf <2 | as), (2

“are weaker than those based on

*1, -1

[(z+6™ ™z || <1 (17), " (20)

since

-

&

1, lr..l] < fliz+e™

ltz+6 ol - (22)

-

For example, if L = c(I%-G" ) for some constant c, |c| < 1, the

di?ferences in the bounas are obvious. In (18),'(21) we have

fz+e™ ™« ol = |e]e vz +6™h

while in (17), (20) we have -

£1,-1
|

l{iz+¢ = [cI

and it is possible to have

lof << fo| - k(x+d™h .

' However, for random perturbations L, (22) is often approximately an
equality. To see this, note that a random (dense) L will almost surély

be invertilble; recall Example 2, It is then easy to show that

ez + ¢h-

=1
LAl

1
L < fjzea™ ™) < zea™™2 - fn] .
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Again, since L is random, it will almost surely be well-conditioned

(w.z.t. inversicn) so that ”L-l” ad -H—;:—”- . Hence,

£l -1

lez+ &™) ~te) = iz + 6™ 7Y k)l .

A related aspect, also worth noting, follows from the inegqualities

1. -
_l) 1

ltz+ 6™ )'llll lindl < |lax+e

1. ~1
) Lfl < ez+e™ e fln]f -
K{I+G™)

+ +
If (I%—G'l) 1s reascnably well-conditioned {K(I4—G'l) near 1) , the

majorization (22) will not be a bad overestimate,

Remark 4: By our discussion in Section 1, the appropriate measure of

stability robustness is

d = min 1 (23)

+ -
@0 [T+ (e ]
and in the sequel we shall consider methods of efficiently plotting

1
ltz+a

11)-1” - as a function of w. This quantity is familiar from

classical sensitivity analysis where it is shown, in the single-input
single-cutput case, that the change in the output of a closed-loop

system, due to {additive) perturbations in G (scalar), is reduced by

a factor of 1 + G compared with the open-loop effect.

Remark 5: So far we have required nothing of our norm other than
[|I||= 1. Of course, a frequently ocecurring norm in much of the

In that case

analysis of linear systems is the spectral norm N
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il - is the smallest singular value of (Id—th). Let
[tx+6™ "]
g, = T, - (24)
[tz + 6™ (Gw)) [L_I

We are interested in plothing dq(w) versus & for large numbers of
w's. We shall see in the sequel that determining dz(m) can be
somewhat more expensive to determine than, say dl(w) or d_{w)., MNore-

over, note that

—rj;—uan <llafl, < /& f1al, (25)
and
-lm—uan <llal, < /& fal, (26)

for A € mem. Since we are usually most interested in order-of-magnitude
estimates of dq(w), dz(m) will lie in a strip sufficiently ¢lose to
dl(m), for example, to give the same qualitative information. The
number m which is the number of inputs/outputs in the system is typically

no more than about 10 and is fregquently much less.

| b. RELATICNSHIPS BETWEEN ADDITIVE AND MULTIPLICATIVE PERTURBATIONS

The folloﬁing theorem relates additive and multiplicative perturba-
tions. Again, the "jw's" will be omitted for convenience and all

relations will be assumed to hold for all w > 0.
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-1 -1
) | -

Theorem 2: |[(z+G flex+ G)-l” <1

Proof: From the identity

1, -1

T+ )t ¢ z+e) "tz (27)

we have

-1,~1

e e = e o] < Jae ™

v e s [z = 1.

We now get immediately the following useful corollazry:

Corollary 1: Assuming that both the nominal closed-ioop feedback

system of Fig. 1 and the perturbation L are stable then the perturbed

system is stable under:
(a) additive perturbations if

||L|l< L == (28)
1+ fiz+aH

(b} multiplicative perturbations if

el < LI (29)
1+ zeo ™ |

Brogf: Follows immediately from Theorem 2 noting that

1 1
< — .
1+ ™™ T liaee™ Y

c. SPECIAL RESULTS FOR THE SPECTRAL NORM

In this subsection we shall present scme results related to those

- norxm. For

in subsections a. and b. but speciazlized to the '”-|2



a matrix H € cmxm with singular values Gl(H) 2_...2_cm(H) > 0 we note

1

that IIH]E = Ul(H). If H is nonsingular, ”H-lnz = Z W > 0. In the
m

||'|E - norm (28) becomes

1

g (I+6G 1)

1+0 (I+G
m

GI(L) < 1)

while (29) becomes

cmu+G)
1+0mu+s)

UI(L) <

We shall make great use in the sequel of the following result

of Fan {7].

Theorem 3: Let A,B € €0, Then

: Vs !
{a) Ui+j_l(A+B) S0, + cj(B,, i>1, 3ji>1

(b} (AB) f_ci(A)cj (Y i>1, 32>1

°i+j-1

1

Part (b) of Theorem 3 can be used to relate cm(Id-G) and Um (I+G ).

Theoren 4: () Um(I+G'1) <o (z+6) < [[c |l20m(1+c’l)
677,
(b) “ 1” O'm(I+ G) i Um(I +G"1) i ”G"'l ”? Q'm(I+G)
G ot
2

Proof: Follows immediately from Theorem 3 using

I+G-l':':G-l(I+IG) and I+G§G(I+G’l) .



For the rest of this subsection we shall let H denote either
I+GorlI+ c;"1 according to whether additive or multiplicative
perturbations are appropriate. The next theorem will show how the
singular values of H + L can be bounded in terms of || L ”2 and the

sinjular values of H,

Theorem S: Suppose ck(H) >G >0 for some k, 1 <k <m, and

k

”L"2 < B. suppose further that 8 < .. Then:

~1 g
(@) (T + H mg_:.-a;

(b} ck(H+L)3_ak-8.

(Note: If k # m, H + L is not necessarily invertible if 8 is toc large.)

1l 1l

Proof: (a) Use I I + K 'L = H-lL and A=1I+H L, B= -H"lb; i=k,

j = m~k ¢+ 1 in Theorem 3(a) to get

-1 ' -1
am(::) f_Uk(I + H L) 4 cm_k+1(H L) .
Thus 0 (I + H L) >1 -0 (H-I'L)
3 - m=k+1
. "'l
>1 - |§ ”2 Opexsy (H ) by Theorem 3(b)

- o, @

1 -~ =~

%%

(v

(b) Use HEH+L~-~Land A=H+L, B=-L, 1=k, =1

in Theorem 2{a) to get

-8,

T (H+L) > o (H) - il -)-O_‘k
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The case k = m is of special interest in Theorem 5 as it bears

directly on our two basic inequalities (18) and (21) of the form

el < gy
2

which are sufficient to guarantee stability of a perturbed closed-loop

M, cZana flnll<8witho<s<a,

1
x=pB

system. Specifically, if [l H

then H+ L 1s invertible and "(H+ L)_J'" <

or cm(H+ L) > o~ 8.
Note that Theorem 5 was expressed in terms of isolating |[L “2 By
analogy with the inequalities (17) and (20) we can also have the fol-

lowing stronger, but perhaps less useful, theorem.

Theorem 6: Suppose Gm-k-l’-l (H-J'L) £1-dwhere 0 < §<1andl <k <m

Then:

(a) o (1 +H L) >3

(b) o (1 +1) >3
k 21
P

Proof: .(a) From the proof of Theorem S5 we have

"~

-1 -1
- >
0 (I+H L) 21 Opmpeqy (B L) 26

1

(b} From I + H L H-l (B+ L) and Theorem 3{b) we have

-1 -1
O (I +H L) <o (H+L) . |8 ||2

S

whence g, (H+ L)} > —e—m——,
- 1n.=1
k 6721,
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d. SPECIAL RESULTS WHEN G(s) = C(sI - AJ'S

In this subsection we shall make use of the fact that the frequency
response matrix is of the form

G(ju) = C(juT - A)"tB

Let us further define

F(jw) = C(juI - A + BC) B (30)

Pacall the Sherman-Morrison-Woodbury formula:

W+ xe) 2wt - w4 oaw Yy "rewl

assuming the indicated inverses exist. Then it is easy to verity thﬁt

1

(T + Gliw)) ~ =T = F{3w) - (31)
and, from (27},
(z + ¢ T ™t = Fis0) (32)

Thus our results in the last section (for example, Theorems 4, 5,

and 6) can all be cast in terms of F by noting that

1
(I + G) = (33)
x G e (A F)
and
o, (T+ ¢l = —L = - (34)
' m=k+1
Moreover,

Jzea™ = flz- = (35)



-2 3w
and

s c™™ = Iz | (36)
for any of the norms we have been considering (in particular, k = m in
(33) and (34)). Use of (31) and (32) results in an apparent savings

in the number of linear systemg to be solved (i.e., number of inversions)

and we shall exploit this fact in the next section.
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4. COMPUTATICNAL PROBLEMS

a. COMPUTATION QOF EFREQUEMCY RESPONSE MATRICES

As we have seen above, an object of considerable interest in studying

1
ez + 6™ g™
as a function of @, when G{jw) = C{jwI - A)-lB we saw that ”(I + G(jw))'l" =

lz-rGw)]] ana iz+6 o) 2] = JF (o) || where F(30) = cldur - A + BC) B,

the robustness of stability of linear systems is a graph of

Thus, regardless of the norm used, a guantity of the form

ctinr - m 'R (37

must first be computed, We shall assume throughout this and the next sub-
secticn that: (1) B e R, ¢ e ™™, H e ®°® are given

(ii) n >m

(Lii) (37) i3 to ba evaluyated fm;: a large number, N, of

values of W; typically N >> n,
Rather than concentrate on exact operation counts, which may he fairly
meaningless anyway, we shall give only order-cf-magnitude estimates.
It will be seen that the bulk of the computational load rests on evalu-
ating matri_ces of the form (37) and so we shall focus initially on
that problem,
If A emnm is dense, the most efficient evaluation of C(jwl - A) -13

by an LU factorization of A, solution of m triangular systems to get
(Jwl - a) -13, and finally a matrix multiplication, reguires approximately

ln3 + l'-mn2 + mzn multiplications (and a like number of additions; we

3 2
shall henceforth c¢cunt only multiplications). This figure, when multiplied

by N, represents a rather large amount of computation.



If A is initially transformed, however, the computational buxden
can be raduced quite considerably. If T is a similarity transformation

on A we have

cljur - a)"18 = er(jor - T tAam el

Tet us define

H =1 tap

and agree, for convenience to still lakel CT, T-lB the transformed C and

B matrices, respectively, as C, B respectively. We now have the problem

of evaluating

c(jé: -1

where H may now be in such a form that (juwI- H)-l can be computed in
less than 0(n3) operations., For example, A can always be reduced to
upper Hessenberg form by (stabilized) elementary transformations (%-n3
multiplications) or by orthégonal transformations (%-n3 multiplicatioens).
These transformations are very stable numerically and, while O(na), are
performed only once at the beginning of the calculations. The resulting
linear system to be solved - for N different values of w = now has an
upper Hessenberg coefficient matrix and can be solved in approximately

2

accurately with the growth factor in Gaussian elimination bounded above

l-mnz'multiplications. Moreover, Hessenkerg systems can be solved very

by n; see (8]. Computihg C{jwl = H)—lB still reguires an additicnal
mzn.multiplications. Negleéting the initial transformation and deter-

mination of CT and T-lB, the Hessenkerg method xegquires approximately



%-mnz + mzn multiplications (for each value of W), a considerable savings
over the o(n3) algorithm if n >> m,

0f course, other transformations T are possible., One possibility is
to reduce A to upper triangular (Schur) form by means of orthogonal simi-
larities. This is considerably mure expensive than reduction to upper
Hessenbarg but:, again, need only be done once at the beginning, How=
ever, the resulting linear system to be solved at each step is upper
triangqular and so still requires o(mnz) multiplications. Because of
potential difficulties with multiple eigenvalues of A there seems to be
little real advantage gained by this procedure, Substantial savings
could be gained though if the eigenstructure' of A were such that it |
was diagonalizable by a reliably computable T. Since this involves
éonsideration of the essentially open numerical problems associated with
computing invariant subspaces we shall not pursue the details here.
But assuming such a transformation were possible, C(joI - D)—ls with
D diagonal, could be computed with approximately mn + m2n multiplications
for each value of &w. Attractive as thig appears, the potential for severe
ill-conditioning of the eigenproblem associated with A render this latter
method unreliable as a general-purpose approach. We shall siubseguently
consider only the Hessenberg methed,

The analysis above has been done under the assumption that complex
arithmetic was performed. We now outline how G = c(jwI - HJ—lB might

be determined using only real arithmetic, The matrix H is assumed to

be in upper Hessenberg form. We wish to solve first

{jur - ¥)Z =B ' ' (38)



Then

G =~ CZ ,

Suppose Z = X + iY where X, Y e Upon equating real and imaginary
parts in (38) we get the following order 2n real éystem to determine

X and ¥:

~H =1 X B

= (39)
wI =} s o

1l 2 2
B. The matrixz {(0°I + B™) will be

Thus X =%mr and ¥ = ~w(w’T + B2)~
invertible if (JoI - B) is invertible, Note that (4°I + H°) is no longer
upper Hessenlerg but is almost in the sense of having two rather than one

nonzero subdiagonal, Its shape is wholly typified for n = 5 by the

matrix

Linear systems involving matrices of this type can ke solved using
approximately n-2 multiplications. We summarize the Hessenberg method

using real arithmetic:

(i) Peduce A to upper Hessenberg form H, transform B and C,

and cocmpute Hz; this step is done only once.
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(ii) Solve (mzz + Hz)Y = -wB for Y.
(iii) Compute X = %-HY .
(iv) Compute G = (CX) + j(C¥) .

Step {ii) requires approximately mn2 multiplications, step (iii) requirxes
approximately %-mnz, and step (iil)} approximately mzn. The tctal number
of multiplications is approximately %-mn2 +-m2n.

Storage requirements for the Hessenberg method with real arithmetic

are approximately double those for complex arithmetic}

b, COMPUTATION OF ROBUSTNESS MEASURES

We have seen above that quantities of the form (37) can ke reliably
evaluated in O(mnz) cperations. There then remains the problem of

determining (35) or (38).

case l: ” . ”2

For (35}, the singular value decomposition (SVD) of I + G{jw) can
be computed for each value of W, Each SVD typically requires approximately
6m3 multiplications. The smallest singular value is then the quantity of
interest. For (36), inversion of G can be avoided by finding the SVD
§f F(jw), again in approximately 6m3 multiplications. The inverse of

the largest singular value of ¥ is then the guantity of intarest.

case 2: |l ox |l -

le

1
Use of either of these norms in (35) or (36) involves negligible

2 .
computation as compared to Case 1, namely about m additions and absolute
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values and m=1 arithmetic comparisons,
In both cases, the additional work required is usually small compared
with o(mnz) especially if n »> m. However, if m is large relative to
n, significant savings can be realized in using ”-Hlor ”-Hn rather than
H . ”2. In fact, using our previous approximate operation counts for

the Hessenberg method and setting n =Xkm, we have

work per value of w using ”‘Ilﬁ - k2 + 2k + 12

p:l
work per value of & using ||« “l or ”'|L k° + 2k
kz + 2k + 24
Note though that p = -~ if singular directions are also com-
k™ + 2k

puted.
In the event A (or A - BC) can be successfully diagonalized as
mentioned in Section 4.a. the potential savings in avoiding || - ”2 ara

somewhat greater. 1In fact, we then have

_ k+6
P ==

(or p = *EEEE if singular dirvections are also computed).

The above comparisons are only approximate and should in no way
be construed as definitive statements. The purpdse of this section is
to merely introduce certain aspects of the numerical computations and
suggest further avenues of exploration. A great deal of numerical
experimentation remains to be done. Reliable software such as LINPACK

[9] for linear systems will be of great benefit in this research.
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5. CONCLUSIONS

We began this paper with an attempt at a "formal" definition of
robustness, We then applied the definition to the problem of robustness
of stability of linear systems as discussed in I}]. The cases of both
additive and multiplicative perturbations were discussed and a number of
relationships ketween the two cases wexe given., Finally, a number of
éomputational aspects of the theory were discussed including a proposed
new method for evaluating general transfer or freaquency response matrices,
The new method is numerically stable and efficient, requiring only
O(mnz) operations to update for new values of the frequency parameter
“rather than O(na)

A number of interesting research areas suggest themselves in this
work., One such area is that of constrained perturbaticens. For example,
in our basic problem we were concarned with the nearness to singularity
of a nonsingular matrix A € e, If the admissible rerturbations E
are somehow constrained for one reason or ancther, for example E upper
triangular, the usual bound on ||E||for which A + E is singular but E
is "dense" may be overly pessimistic. Related to this is the fact that
our bounds were derived for the "worst case”. The size of perturbations
allowed in a linear system to ensure continued closed-loop stability may
very well be larger than we have derived if inputs to the systém are
constrained in certain directions.

We have concentrated in this paper on the analysis of linear ﬁontrol
sfstems. There_are many intéresting « and difficult = synthesis problems,
howe§er. For example, can A, B, C ke chosen to assign certain singular

)

: +
values of I + G~ What is the effect of changes in B cor C on the
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‘ 1
l?- Can a matrix XK be determined so that I + (GK

behaviox of I + Gt
has certain singular values?

On the computaticnal side, more research needs to be done on updating
parametric problems. That is, suppose we have a matrix (say, G(jw))
which depends "in a rank m way" on a parameter ®. When @ changes how
can various quantities be updated efficiently?

Finally, as mentioned in Section 4.b., a great deal of numerical

experimentation is necessarxy to get a qualitative feel for the numbers

in detexmining robustness measures.
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